AN-722

Application Note

REPLACING SEQUENTIAL
LOGIC WITH ROMS

Prepared by:

Jerry E. Prioste

Computer Applications Engineering
Motorola Semiconductor Products, Inc.

As ROM sizes increase, the cost per bit
continues to drop resulting in new uses for
ROMs previously thought not practical or
too costly. This note discusses how to use
ROMs to replace random logic with feed-
back loops. The advantage of using ROMs
is reduced package count and a more cost
effective system. Three design examples
are given to show the implementation tech-
niques involved in achieving a reliable
design without pitfalls. The techniques
shown will hopefully inspire others to use
these techniques in present designs and to
develop new innovative techniques for
using ROMs.

MOTOROLA Semiconductor Products Inc.

© MOTOROLA INC., 1974

REPLACING SEQUENTIAL
LOGIC WITH ROMS

INTRODUCTION

Read-Only Memories (ROMs) have become increasingly
popular in logic system design. The number of storage bits
on a ROM chip have increased greatly each year resulting
in lower costs per bit. In turn, these lower costs have
stimulated new applications for ROMs, such as replacing
random logic devices. Microgramming, fo. example, is being
widely used in the design of computers: it replaces the
control logic with ROMs. This results in reduced package
count and lower costs while adding system versatility. The
larger sized ROMs also have been used in the macropro-
gramming area for storing often-used software programs;
in fact, many of the new microprocessors depend on this
technique. ROMs are also used in more traditional appli-
cations such as look-up tables, code conversion, and char-
acter generation.

This article describes the design methods for using ROMs
to replace sequential logic. Sequential logic is considered
as any design that requires random or combinational logic
containing feedback loops. Design techniques for imple-
menting a sequential logic design in gates and flip-flops
are described in Reference 7. The MC5003, 64 word x
8 bit programmable ROM, will be used to illustrate the
techniques involved in implementing sequential designs
with ROMs. Larger ROMs are available that make the
methods described here even more advantageous.

COMBINATIONAL LOGIC

The technique for the replacement of combinational
logic ROMs will be discussed first before looking at se-
quential logic design with feedback. Conversion of com-
bination logic to a ROM can be accomplished if any of
the following are available:

(1) Logic Equations
(2) Truth Table
(3) Logic Drawing

If logic equations are given, the equations must be con-
verted to a Karnaugh map in order to define each output
for all combinations of inputs. Then, the content of the
Karnaugh maps is placed in a truth table to establish the
pattern that the ROM must contain. If a logic drawing
must be converted to a ROM, the equations for each out-
put can be written. Then the procedure follows as dis-
cussed above until the truth table is established.

To determine the number of gates that must be re-
placed before the ROM becomes economical for replacing

random or combinational logic can be estimated by
this formula:
number of gates > $ROM + associated cost/ROM
replaced per ROM ~ $GATE + associated cost/gate

This formula states that the number of gates replaced
for each ROM used should be greater than or equal to the
cost of the ROM plus associated cost divided by the cost
of one gate with its associated overhead. The associated cost
per gate must include the cost of the PC card, power supply
fans, insertion, inventory, connector, capacitors, check out
time, and number of interconnects affecting the reliability.
The associated cost per gate can vary from system to sys-
tem, but $.50 is a figure that many designers would agree
upon as reasonable cost. Assume that the cost of the gate
plus the associated costs is $.50 and that the associated
cost of the ROM is $2.00. The equation now develops as:

replaced per ROM ~ $.50

As an example, if the cost of the MCM5004 a 64 x 8
PROM is $15 (3 cents/bit) in large quantities, then the
number of gates replaced for each PROM should be more
than 34. A BCD to binary converter using the MCM5004
replaces approximately 54 gates; this would be a savings
of 20 gates or approximately $10.00. Another advantage
of using a ROM is that the system size is reduced and
reliability should improve as a result of fewer packages.

DESIGN EXAMPLES

Unlike simple combinational circuits, many sequential
logic design systems require feedback loops where the
outputs are a function of the input signals and the present
state of the outputs. There are basically two types of
sequential circuit design, synchronous and asynchronous.

Synchronous sequential design requires data inputs that
are synchronized with a clock. When using ROMs, there
are two ways of designing synchronous sequential circuits
as shown in Figure 1. Clocked storage feedback or direct
feedback can be selected. The microprogramming tech-
nique basically uses the clocked storage technique with
latches in a master slave configuration.

The clocked storage technique shown in Figure 1(a)
requires six additional D-flip-flops, but it results in a more
efficient usage of the ROM bits. As an example, the asyn-
chronous circuit of Figure 1(a) can be used as a divide by
64 (or less) counter with any sequence of states possible
(more than one output can change at a time). The pro-

Circuit diagrams external to Motorola products are included as a means of illustrating typical semiconductor applications; consequently,
complete information sufficient for construction purposes is not necessarily given. The information in this Application Note has been care-
fully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information
does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

grammable ROM is used to store the next state table.

In contrast, the sequential circuit with direct feedback,
as shown in Figure 1(b), can be used as a divide by 16
(or less) counter with three outputs that can be used as
decoders or to generate a programmable word sequence.
Only one feedback output can change at a time so that
race conditions will be avoided in the design.

Synchronous data inputs could be added to the address

inputs of the ROMs to produce other types of sequential
circuits. Also, more than one ROM can be used where
more storage is required. Reference 2 gives an example of
the design of a synchronous sequential circuit using clock
storage feedback for generating an output whenever four
bits, and only four, of a 5 bit serial word are logic ones.
The design is straightforward with the PROM storing the
next state table.

N
D Q !
—C
I MCM5004
CE1 BO— D Q
CE2 —
B1 e—ic
A5 B2
A4 B3
A3 B4 D Q .
A2 BS e—c &Outputs
— A1 B6
— AO B7
D Q =
e—C
D Q :
&—C
Q -
Clock
(
]

(a) Synchronous sequential circuit using clocked storage feedback.

MCM5004
S>— CE1 BOf———)
>——{CE2 B1f——-i
C|ock>———‘ A5 B2f———
Ad B3 - $
1
A3 B4 p [OutPuts
A2 B5 -
Al B6 -
[:AO B7 >

(b) Synchronous sequential circuit with direct feedback.

FIGURE 1 — Synchronous Sequential Circuit Types

COUNTER DESIGN — SYNCHRONOUS EXAMPLE

A divide by 16 counter design illustrates the technique
for designing a synchronous sequential circuit using direct
feedback. The divide by 16 counter is used as a prograrm-
mable word generator. since only one output can change
for each state, a minimum change, reflected code must
be used.

The first step is to draw a timing diagram of the word
statement, see Figure 2. Note that 32 states exist when
both the low and the high states of the clock are included
even though this is a divide by 16 counter. The program-
mable word sequence. BO. B1, and B2, were chosen arbi-
trarily. The BO output generates a number of pulses of 1,
2. 3. 3, and. 2 during each 16 bit word. The Bl output
generates a pulse synchronized with the last pulse occurring
on the BO otuput. Output B2 generates a pulse width that
is 1.2, 3. and 4 clock periods long in sequence for each
16 bit word.

circuit is in stable state 1 and the clock changes from an
“0” to a “1” the circuit goes to unstable state 2 and
finally locks up in stable state 2.

Next, the transition map is prepared as shown in Fig-
ure 4. A merger diagram is not required in this example,
since merging does not occur. A five variable Karnaugh
map is used to represent each of the 32 states in the flow
table (Figure 3). The five variable y1, y2,y3, y4,and y5
represent the secondaries of the circuit; these are the
counter flip-flop outputs in this example. State | is placed
in the square of the map where yl1, y2, y3, y4, and y5
are all in the 17 state. This provides the initialization
state when the chip enable is disabled. Since state I must
go to state 2 when the clock switches from a “0” to a
“17, the state 2 is placed in a square of the map where
there is a one variable change. If the 2 was placed in a
square of the map where there was more than one variable
change a race condition could result. Race conditions

c 111

B1 I[[

32 States or 16 Bit Times
1 2 34 5 6 7 8 9 1011121314 1516 17 18 19 2021 22 23 24 25 26 27 28 29 30 31 32

o M M1 M s

111
[[

o I S R

L L7

FIGURE 2 — Timing Diagram for Programmable Word Sequences

The next step is to generate the primitive flow table,
see Figure 3, using the timing diagram (Figure 2). The
circles around the numbers represent stable states, and
numbers without circles represent unstable states. If the

c c
Outputs Outputs

0 1 B2 B1 BO 0 1 B2 B1 BO
s 4 o | o @ |11 o of o

? @] 19 o| ol o
@| s o] oo 20| 1| o o
5 @ 0 0) 21 1 0 1
@l e 1] 0] o0 @) | 22 | 1 o | o
7 @ 1 0 7 23 @ 1 0 1
@Ol e 1| o] o||@|2a |1]| 0] o0
o 1 1 1 25 1 1 1
@ | 10| o 0 0 @ |26 | 1 0 0
1 o| o | o 27 1 o o0
@| 2] 1| o0o]o||@]|28]0]0]o0
13 @[0 1 29 o 0 1
3| 14| 1 0 0 30 f o 0 0
15 1 0 1 31 o 1 1
16 || 1 0 0 @) |32 | o 0

17 1 1 1 1 @ 0

FIGURE 3 — Primitive Flow Table

\v1,v2

y3 | v4 | y5 00 01 11 10
0 0 (0] 22 21 6 11
0 (o] 1 21 28 5 12
0 1 1 24 25 8 9
0 1 0 23 27 7 10
1 0 [0} 19 30 3 14
1 o] 1 20 29 4 13
1 1 1 17 32 1 16
1 6 o 18 31 2 15

FIGURE 4 — Transition Map

should be avoided since an indeterminate state could re-
sult. Similarly, the rest of the states are placed on the
transition map resulting in a minimum change reflec-
tion code.

Next, the secondary assignments from the transition
map are transferred to the flow table (Figure 5). The
timing diagram for the secondary assignments is then
drawn, as shown in Figure 6. This shows the counter out-
puts which are the secondary variables.

Next, the excitation map is prepared, (Figure 7), to
define the output excitation variables Y1, Y2, Y3, Y4,
Y5 interms of the input secondary variables and the clock
input. A six variable Karnough map is required with the
word number located in the upper right hand corner of

O

o o

Secondary Variables C Outputs
yi | v2]|v3 |v4 | y5}) o | 1] B2]|B1]BO yi|v2]| vy3 | v41v5) o | 1 IB2] B1] BO
1t 1@ 2] 1|0 o ojo| 1| 1| 1]|@|18yo]| o] o0
1l 1ol | @f 1] oo 1| 1| of 9 ol o] o
111 loflo|®|a]o]|o]o oo | 1] o] o 2011 {0 o
1t {11 |lo]|1]s|@]o|ofo o |lo | 1| o 1] 2 1] 0| 1
11]olo |1 |®|s6] 1]o]o olo|loflo| 1]|@|2{1]0]|o0
1 {1 loflofof7|®f] 1|01 olojo| o of28[@]|1 o]
11 o1 lol@|se] 1]o]o ojlofo| 1| ofl@|2a]|1]| 0] o0
1t {1 o1 |1 |7 A T o lolo| 1] 1] 2 (N R
1 lolo |1 |1 [@]|1w0]o oo o1 |lo| 1| 1]@|2|1]|0] ¢
1 |lo o |1 o |n o oo o |1 o] 1] o] 27 10| 0
1 oo fo o |G@|12]1 |00 o (1]{ojo|of@|2f0o|0]o
1 oo o |1 @] 1|01 o |1 |o| o 1] 2 oo 1
1o |1 o (1 |@|14]1|o]o o |1 | 1] o 1 30 fo | o] o
1o | 1o |o 15 1 o |1 o |1 | 1] of ofa o | 1| 1
1o |11]o 1511 |0 |o0 o |1 |11l ol@|32]|o0o]|0]o0
L T I T R T R IR T T O T o |t | v 11| 1|G]o oo
FIGURE 5 — Flow Table With Secondary Assignments
32 State or 16 Bit Times
1 2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32
N I I I A O I 6 A I
N S I S I N R SR
R | l r
va |16 [
vy5 I +16 1 J_
FIGURE 6 — Timing Diagram for Counter Qutputs
4
CcC=0 C=1
2 1
16 | 8] Y1 ¥2 yl y2
y4 [¥5] 0 0o 01 11 10 0 0 01 11 10
0 1 3 2 2 s = A
0 0j]00010 01000 11010 10000 00000 01001 171000 10001
10
0 0 1rnnnn1\8 r\11n19 t11nn1\11 10101 |l anaaa 2| 13 15 TN
v v TpYvvvy vy rwvd Yy ~ vuuvuvu Wiouu i) 1 1T000 Qgooo1)

24 25 2 28 2 31 30
1| 1101011 01011 10011 00011 01010 11011 10010
16 17 21 23 22
1 01(00010) 01000 (11010) 10000 00011 (©b1010) 11011 (10010)
3

19
35 34 S 36 9

-

2 33
0| o|@o100) | 01110 10110 00101 |[(@1100) | 11101 |(0100)
a1 43 42
0 | 1joo00n 11001 @101 |@i100 | @1i0D) | 10100
56 57 59
NI (TEEDINRARRE 00111 00110°° 6 111100 @017
51

50
n1110n 171100 10 10) ~ nsz 53 o5
NAREEY) e juetly ()

-
o
(]
(]

~ 11 A1 (2 N
i (00110) 01111 Giiio) 10111

Y1 Y2 Y3 Y4 Y5

FIGURE 7 — Excitation Map for Counter

each square. The weights of the input variables were arbi-
trarily chosen, with y2, y1, C, y5, y4, and y3 have the
weights of 1,2,4,8,16,and 32 respectively. Each stable state
in the map has been circled, and has the same code as the
corresponding code of the secondary state. Each unstable
state is represented with the code of the next secondary
state that will eventually make it a stable state. As an
example, word 59 in Figure 7 has a circle around the
code 11111 which represents stable state 1 in Figure 5.
When the clock switches to the “1” state, word 63 is
selected. Word 63 has the code 11110 which is an unstable
state, 2, and represents the next transfer to a stable state,
which is word 55 representing stable state 2. The rest of
the codes are filled in the squares of the excitation map
using Figure S as a reference.

Next, the output map is prepared, as shown in Fig-
ure 8, in order to define the B2, B1, and BO outputs in
terms of the inputs. Each stable state in the map has been
circled, and represents the same state as was circled in the
excitation map. As an example, word 59 in Figure 8 has a
circle around the code 100 which represents stable state 1
in Figure 5. When the clock switches to the ‘““1” state,
word 63 is selected which is unstable state 2. Since stable
state 2, located at word 55, has an output of 111,a 111
code is placed in the square for word number 63. The last
two outputs for this code in word 63 are actually optional
conditions and could be either a “0” or a ““1”’. For mini-
mum time delay, the outputs are chosen to switch im-
mediately during the unstable state condition. The rest of
the codes are similarly placed in the output map using
the flow table of Figure 5 as a reference.

o o o o
- o
o o
o o
[o2]
o
o
o
-
o -
o -

N
a
N
~N

o
o
o
o
o
-
~
o
o
o
—
o
IS}

w
N
[A)
w
[A]
o

»
(=)
»
-
EN
w

o
~N
a
©

D
o
o
-

- - -
- o o
o - o
- - g
o o o
o o (=]
&)
(2]
- o
o o
o o
o -
o o
(] o
— o = -
o o o o
o o o o

tation at the PROM outputs. As an example, word O of
Figure 7 and 8 is transferred to word O in Figure 9.
Word O in Figure 7 is 00010 and in Figure 8 it is 100,
while Figure 9 is marked with 00010100. Similarly, the
rest of the words are transferred to the program sheet.

Figure 10 shows the pin numbers and connections for
the MCM 5003 used in the counter design, while Figures 11
and 12 show the actual waveforms at clock frequencies
of 100 kHz and 1 MHz respectively. Note that the wave-
forms are the same as the ones shown in Figure 2. There
are some possible problem areas that should be understood
when using direct feedback. Although only one address
input changes at a time, differences in the internal delays
in the address decoding of the PROM can cause a hazard
condition to exist in which a false word location is momen-
tarily selected. In the MCM5003, the false word location
will be selected for approximately 10 ns or 1 gate delay
during the hazard condition.

Programmable ROMs using ECL logic internally for the
decoding such as the MCM10149, minimize the hazard
condition. The ECL logic has approximately equal delays
through the OR and NOR outputs of a gate, while TTL
logic requires an extra gate (and delay) to perform the
complement function. There are ways around the hazard
condition by sacrificing speed. The decoding glitches are
evident in Figure 12 on the yl output when in the low
state. The decoding glitches are approximately 0.5 volts
and are a possible problem only when the output is in the
low state. The amplitude of the decoding glitches varies
from device to device. If the amplitudeis large enough to
be detected when fed back at the input, the PROM could

C=1
y1ly2 | ;
00 01 11 10
4 7 6
12 13 15
101 101 |@D"
28 29 31 30
111 100 111 000
20 21 23 22

[A)
(9]
w
~
[
©

—_ |-
(=
—_ -

D
»
D
a
~

=
o
-
o
-
-
o
o
o
o]
—_
o
-

o
o

o
o
o
o]
-
-
N
—_
.

w
)]
N

gm
N
o
o
o
4}
W
:m
2
—_
N
-

FIGURE 8 — Output Map for Counter Defining the Outputs B2, B1, and BO

Finally, the codes in the excitation and output maps

are transferred to the program sheet truth table (Figure 9)

amragrammahla ROM tha MOCMSNN2 The aveitation
lUl LllC PIOgraiminaviv RULi, ulv MLiiJuuo. 100 Calltauivi

variable Y1,Y2,Y3,Y4,and Y5 are chosen to represent the
B7, B6, B5, B4, and B3 PROM outputs respectively. The
B2, B1, and BO outputs are represented by the same no-

switch to an improper state. The solution to the problem
for the MCM5003 is the addition of capacitance Cr, for

the nntnnfe that are fed back as shown in Figure 1N If .
are 10 24acx as Snéwn in r 1gulc tu. 1l a

510 ohm load resistor, R, is used, then a 100 pF load
capacitor, Cp,, should be used. If Rp, = 3.3 k, a load
capacitor is not required for the typical device although

BO

x x|x x x X x x X x|x x x|x x X X X X
-
P X x x x X X X X X X
o~
& x x x X| X x x| xxx|x xx|x x|x xx| x x| x x| xxx| x x| x X X X X X X
o|w
2% X X X |x x X X X|x X x x x X X X|X X X X x X X X|X X X |X X
s
©
Olels
o> x X X[X X X X|x X X X|x x X |x % X X X[Xx X X X|x x x X[x x %
2 x X|x x X X[X x x X x xX[xxXxx/xxxx/xxxx/xxxx[xxx
o|«~
2% x |x x |x x |x xx|x x X |x x |x x |Ix x |x x |x x |x x Ix x |x x
~
o> X X X X X X X X X X X x X X X X X X X X X X X X X [x % X X
M1V-. - - - 00 ~0|0 0|0+ 0|l00|l0O 0|0 =0l0 =00 0l0 0|0 0lo-+0|l0+o0|l0
MC - OO0 |-+~ c~0|l00 O |- r+c0lo00O0 |- ~c0lo0O0 |- e=~0l000 |- c~0|l000 ~|--0|lo00 0 | - ~
7]
H
..mMm:W o - = |- - - 0/l00 00|00 0 |+ v |l 00000000 | =+ vl - - 00 000|000 | = |- = ~
]
<
Il o coolooorfrrrelrerr|lrerc|lc--oloocoooloooo|loooolooo e cflree e e |-~
MQVV.. o oOo0ooloooolooooloooocjloooo|jlco 0 |l e rmrlrer e mlrr e elr e e e e e - -
2 © =i B A I I N R R R I R R R R R I ER R AR R R I R R R PR R

X' represents a bit to be programmed to a logic 1.

FIGURE 9 — MCM5003 Program Sheet for Counter

25 to 50 pF must be used for some devices.

If the MCM5004 (with a 2 k internal collector resistor)
is used instead of the MCM5003, a SO pF capacitor should
be used. The RC time constant is enough to squelch the
decoding glitches with a slight sacrifice in speed. The de-
coding glitches are smallest in amplitude at higher V¢C

voltages and at higher temperatures. The synchronous
sequential circuit using clocked storage feedback (see Fig-
ure 1(a) does not have the problem of squelching the
decoding glitches, since the storage devices see only the
information that is present when the clock changes from
a“0”toa“l”.

Count Enable ‘
3 3 5 $ g 3 R, 8 Places
I 6 22 '
CE1 BO L2 QO BO
21 l
10 A5 (y3) B1 " -OB1
9 B2 & -0 B2
A4 (y4) 19 .
v (Y5) B3 -@ L 2 QO y5
8 18
A3 (y5) (va) B4 f @ -Ovy4
17
Clock > A2 (C) (Y3)B5 2 —@ O v3
16
4 2
A1y 1) (v2) 86— v ! Ov
3 (Y1) B7 O vl
AO (y2) 1 1 i
™ o~ T~
€1 . CL, 5 Places

FIGURE 10 — PROM Connections for Counter Design with Direct Feedback

y1

BO

B1

B2

Vertical Scale=5 V/cm
Horizontal Scale = 25 us/cm

R =33k
CL=10pF
Stray Capacitance

FIGURE 11 — Counter and Output Waveforms of Figure 10
for Clock Frequency of 100 kHz

2l

” £ P o f f

B1

B2

Vertical Scale=5 V/cm
Horizontal Scale = 2.5 us/div.

G e S {

R =3.3kQ

C_ =10 pF
Stray Capacitance

FIGURE 12 — Counter and Output Waveforms of Figure 10
for Clock Frequency of 1 MHz

CLOCK SYNCHRONIZER AND CONTROL DESIGN —
COMBINATION ASYNCHRONOUS AND
SYNCHRONOUS EXAMPLE

A combination asynchronous and synchronous sequen-
tial circuit can be built, using the MCMS5003, in the design
of a clock synchronizer and control. This circuit is very
useful in the control section of a computer for timing
and control. The synchronous inputs are the clock and
the start/stop control, while the asynchronous input is
the start button. The purpose of the circuit is to synchro-
nize the clocking and timing signals for the control section.

Figure 13(a) and (b) shows the timing diagram for the
synchronizer circuit. The synchronizer enable initializes
the circuit and can be implemented directly using the chip
enable of the PROM. The leading edge of the signal from
the start button switch initiates the timing sequence. The
start/stop control in Figure 13(a) is the output of a latch
or clocked flip-flop: it is normally synchronized with the
clock. One synchronized reset pulse occurs whenever the
start button is depressed. If the start/stop control goes
“high” just after the reset pulse is initiated, sync pulses
will occur until the start/stop control goes low. Note that
the trailing edge of the start button signal has no effect
on the timing signals. The ill-prdcess signal occurs only if
sync pulses occur. The synchronize signal engulfs all reset
and syne pulses. Another output is available having the
reset and sync pulses ORed together.

Figure 13(b) shows the timing diagram under a different
set of conditions. Here, the start/stop control signal is
normally “high” and is the output of a decoder or gate
circuit. One reset and any number of sync pulses occur
until the start/stop signal goes “low” after having decoded

a stop condition. The synchronizer enable can be used to
start the sequence over if the start button signal is ““high”.
If the start button signal is “low” when the synchronizer
enable is brought “low”, the sequence of timing signals
immediately halts.

The design of the synchronizer circuit is a little more
complicated than the counter example. Additional design
information will be clarified in the following discussion
to enable the reader to design other sequential circuits
using PROM’s.

From the timing diagram and an understanding of the
design goals of the circuit, a primitive flow table is derived
as shown in Figure 14. Each row in the table can have one,
and only one non-redundant stable state. The states for
the table, with the numbering being chosen arbitrarily,
are derived from the timing diagram. Some of the states
are listed in sequence in the timing diagram of Figure 13(a).
Only one stable state can exist in each column for a given
output. All possible combination of inputs must be present
in the table with the don’t care conditions being repre-
sented by a dash. Note that the outputs on the table are
the complement of the timing diagram. The reason for the
complement . output signals on the timing diagram was
that the initialization state occurs when all outputs are high.

The next step is to generate the merged flow table,
shown in Figure 15, by combining rows that contain like
state numbers for all combinations of inputs. The outputs
of the rows do not have to be the same when merging two
rows; although in this example, the merged rows did have
the same outputs. The reason for merging is to reduce the
number of states required. In this example, the number
of states is reduced from 24 to six.

HN2NY 4821U0IYIUAS Jo4 wesberq Buiwi) — eg| YN DI

(e)

n

_ _ _ “ _ _ _ — _ _ _ _ _ _ _ _ (s@s|nd 18say R duAg)

(ssad0ud u|)

—
J
3
T
s
R
o

£

(9s|nd 1esay)

o

‘ M., I, Il

_ _ _ _ _ _ _ _ _ — _ _ X (s8s|nd duAs)
— ’ 3 (871U0ayduAsg)

T T
\ _ — 7 ' \ jou0d
[T - ' ' s

e doig/iiers

_ _ _ _ _ _ _ _ J %2010

“ g uonng
L fA— § ue1s

L 'z ‘22’91 ‘9L '91'8LLL'SLLLGL LLSL'SVS'YLZL ‘9 ‘G PLZL9 L 9 'S b €T L 'z L —=-saielg

_ a|qeuy
19Z1U0IYdoUuASg

‘0oz ‘sl 8l

10

1N2A1D J821IU0IYOUAG 104 wesbeiq Bulw] — qgL 3YNOIL

(a)

_ _ _ _ _ _ _ _ _ _ — _ _ _ — _ _ _ _ _ _ _ _ _ 4 (sasjnd 18say & JUAS)

I L, [N

I

[M, MU Lo

d (sse004d uj)

Y (@sind 1esey)

X (s3s|nd 2uAsg)

_ r _ f—

{4 — _ L&

E

77 27

P
|

e e e - ———— _ —f

W

prmeeed
- e o - - -

N

=

rga

-

(9Z1UOJIYOUAS)

{os1u0d
dois/ie1s

%]

%9010

uoung
ies

a|qeu3
18ZIU0JYOUAS

11

SCB Inputs Outputs
000 | 001 (011 | 010 | 100 | 101 | 111 | 110 z P R X E
| a - 2 9 |12 |11 | 10| o 0 o 0)
1|4 |3 |@|e |12]1]1w0]o|lo|o|o]o
1 s |®] 2 o |12]11 |10 o0 | o o | oo
1 @ s 2 9 |12 13 |10 o | o] oo 1
1 6 || 8 |16 |15 |13 | 1a | 1 0 1 o 1
1 1(® | 7 | 2|9 |23|2a|10]0 0|0]|o0]o
1 e || 2 9 |23 |24 |10 o) 0 0 0
1 6 5 16 | 15 | 13 | 14| 1 0 1 0 1
1 4 3 2 |(® |12 |1 |10]o0 0 0 o o
1 a 3 2 9 |12 | n o |o| oo | o
1 a4 |3 | 2 |9 |12|@|1w]jo|ofo]|o|o
1 | a 5 | - |9 @13 -]o o o | o 1
- - 1615 @]l 1 | o] 1 o | 1
- | - 5 g | 16 | 15 | 13 1 0 1 0 1
22 |21 |19 [20 |16 | (9|17 [18] 0 1 0 0 1
22 | 21 | 19 | 20 15 |17 [18] o 1)) 1
1 6 |19 20 |16 [15 [@) | 18 | 1 1 0 1 1
1 6 19 | 20 | 16 | 15 | 17 1 1 0 1 1
1 6 20 | — - |17 |18] 1 1 0 1 1
1 6 | 19 - | = |17 || 1 0 1 1
22 |[@) |19 |20 |16 |15 | -~ | - | 0 1 0 0 1
@ |21 |19 |20 |16 |15 | -~ | - | o |1 o | o 1
1 6 7 2 9 |@) |24 | 100 |0 o | oo
1 6 7 2 | 9 |23 1w]lo |ofo | oo
FIGURE 14 — Primitive Flow Table for Synchronizer
SCB Inputs Outputs
000 | 001 |'011 | 010 [100 | 101 | 111 |110][Z |P |R |X |E
O E-RIONMORRENI®; olojofo]|o
b 1 @ 5 2 9 | (@ |13 |10 |o|o]o|o]n
c 1 @ | @] 2|9 |6 10 |olo|o]olo
d 1 6 | (® 16 | 15 | (19 1lol1]ol1
e . @ @ 19 | 20 @ |17 |18 |o|1|o|o|1
f 1 6 16 | 15 | () NERIERE
FIGURE 15 — Merged Flow Table for Synchronizer
The next step is to prepare a transition map in order to
assign the secondary variables. Each of the rows are arbi-
trarily assigned a letter in Figure 15 to represent a second-
ary state. A three variable map in Figure 10 is required to
define the six states. The assigning of states in the map is Y1Y2
the same as in the previous counter example by assigning vz] oo | o1 1 10
states with a one variable change. However, in this example
cycles are required in order that more than one secondary ? Z Z ; 2

variable doesn’t change at one time. Two spare secondary
states, G and H, are utilized to avoid critical races. The
cycles are shown with arrows, indicating the movement
from one unstable state to another unstable state. The
absence of an arrow at an unstable state indicates a direct
movement to a stable state.

12

FIGURE 16 — Transition Map

A cycle from one unstable state to another unstable
state with the samie number cannot be done for all cases,
even though there is a one variable change. This condition
exists, when in the middle of a cycle, another input changes
causing the circuit to go to the wrong state. As an example,
assume the circuit is in stable state six (see Figure 17) and
B goes to a logic “0”. A cycle must occur since Y1, Y2,
and Y3 are presently 000 and must go to stable state 1
with the secondaries changing to 111, a three variable
change. Assume that a cycle was chosen instead from un-
stable state 1 in row C to unstable state 1 in row D. When
the circuit reached row D, a change in the clock from a
“0” to a “1” would cause the circuit to end up in stable
state 8 instead of state 2. By making the cycle from C to
H, (Figure 1), a change in the clock would cause the
circuit to go to the correct state, 2. After the cycles and
transition of states have been assigned in Figures 15 and

16, the secondary assignments are assigned to merged flow
table (Figure 17).

The excitation and output maps are filled out in Fig-
ures 18 and 19, using the same method that was described
previously in the counter design example. In the output
map, the complement of the outputs in Figure 17 were
used to arrive with the correct waveforms as shown in
Figure 13.

Finally, the program sheet for the programmable ROM,
the MCM5004 is filled out with the codes from the
excitation and output maps. The corresponding code in
the word number of the map is transferred to the same
word number in the program sheet.

The circuit connections are shown in Figure 33. The
50 pF capacitors are used to squelch the decoding glitches
from the outputs that are fed back to the inputs.

Secondary Variables SCB Inputs Outputs
yl y2 y3 | 000 001 011 010|100 101 111 110{Z P R X E
a o D) e ® @@ 12 @ 00000
b 1 0 1 W @ s 2 o (1 13 1010 0 0 01
c 0 0 0 116 @ 2 9 Y@ @) ,10]o0oo0000
d 0 0 1 1 6 @ 16 | 15 (13 1701 0 1
e 0 1 o ld| @ 19 |20 17 {180 1 0 0 1
f 1 1 0 1 6— (19 6] 15| @ 110 1 1
G 0 1 1 1 -:l — | 2’15 - | =
h 1 0 0 1 6 - 2 9- 23 -~ ‘o
FIGURE 17 — Merged Flow Table With Secondary Assignments
Secondary Variables SCB Inputs
y1 y2 | y3 000 001 011 010 100 101 111 110
0 1 3 2 a 5 7 6
c| ol o] o [|100 100 |100 (000 100
8 9 11 10 12 13 15 14
d 0 0 1 011 000 [(0O01 001) (011 011 001 001
24 25 27 26 28 29 31 30
G 0 1 1 111 - - - 010 010 — —
16 17 19 18 20 21 23 22
e 0 1 0 010) {(010) |110 110 J010 (010 (110 110
32 33 35 34 36 37 39 38
h 1 0 0 101 000 — 101 101 000 — 101
40 a1 43 42 a4 45 47 46
b | 1] 0| 1 |111 001 [111 111 001 [111
56 57 59 58 60 61 63 62
a | 1| 1| 1 |@iD (1o (1D (1D |G1D (o1 (1D 111
a8 a9 51 50 52 53 55 54
f 1 1110 (111 [100 110 (010 [010

FIGURE 18 — Excitation Map for Y1,Y2,Y3

13

Secondary

Variables SCB Inputs
vl | y2|vy3| ooo 001 011 010 100 101 111 110
ol ol ol11111° 6111_'1)1 G111j3 SEEERE EEEEER 61111)5 611137 11111°
1
ol ol 1[11111’ 11110 @101@1 @101@10 11110 11110 @mojs @101@14
24 25 27 26 28 29 31 30
ol 1] 111111 - - - 11110 11110 - =
16 17 19 1 2 21 23
o 1] 0fdo110 | Go110) | -01-0 -01-08 Gon@o (0110 -01-0 -01-022
32 33 35 34 36 37 39 38
11 0] 011111 10110 - 11111 11111 10110 - 11111
41 43
SIS IRNIEEEED -1-10 SEERR EEREERS 45 St-t0 i1
NN GEED N IERE 057611.1.1)5;9 61.1.1.1.)58 GH’.DGO 111100 Fﬂ.ﬂDﬁa @111952
4 1
1] 1] oloo100™| 00100” 60100)5 (0'010@50 —01-0] -01-0" @010@55 @010@54
ZPFRXE
FIGURE 19 — Output Map
Address Data
No. | A5 | A4 | A3 | A2 | A1 | A0 | B7 | B6| B5| B4 | B3| B2 | B1| BO
vyt | v2 | y3| s C B [yt |v2|vy3]| Z P R X E
0 0 0 0 0 0 (o] X X X X X X
1 0 [0} 0 (0] [0} 1 X X X X X
2 0 - 0 0 o 1 (o] X X X X X X
3 0 o 0 o} 1 1 X X X X X
4 0 0 0 1 0 0 X X X X X X
5 0 0 0 1 [0} 1 X X X X X
6 [¢] (0] 0 1 1 (o] X X X X X X
7] 0 0 1 1 1 X X X X X
8 0 0 1 0 0 0 X X X X X X X
9 0 0 1 o 0 1 X X X X
10 0 o] 1 0 1 o] X X X
11 ¢] [¢] 1 (0] 1 1 X X X
12 0 0 1 1 o 0 X X X X X X
13 (o] o] 1 1 (0] 1 X X X X X X
14 (o] 0 1 1 1 [0} X X X
15 0 o] 1 1 1 1 X X X
16 0 1 0 0 0 0 X X X X
17 0 1 0 0 0 1 X X X X
18 0 1 (0] o} 1 o X X X
19 0 1 0 (o] 1 1 X X X
20 0 1 0 1 0 0] X X X X
21 o} 1 [0} 1 (o] 1 X X X X
22 0 1 0 1 1 0 X X X
23 4] 1 0 1 1 1 X X X
24 [¢] 1 1 0 0 0 X X X X X X X X
25 0 1 1. 0] 0 1
26 0 1 1 0 1 o]
27 0 1 1 0 1 1
28 o] 1 1 1 (¢] (4] X X X X X
29 [0} 1 1 1 0 1 X X X X X
30 0 1 1 1 1 0
31 0 1 1 1 1 1
32 1 0 0 0 [0} 0 X X X X X X X
33 1 (s} [0} o 0] 1 X X X
34 1 [0} [0} [¢] 1 [o] X X X X X X X
35 1 0] 0 1 1
36 1 0 0 1 (0] o X X X X X X X
37 1 o] 0 1 (o] 1 X X X
38 1 0 o] 1 1 o] X X X X X X X
39 1 0 0] 1 1 1
40 1 0 1 0 0 0 X X X X X X X

FIGURE 20 — MCM5004 Program Sheet for Clock Synchronizer and Control

14

Address Data
No. | A5 | A4 | A3| A2| A1 | A0 B7 | B6| B5| B4 | B3| B2 | B1| BO
vl | y2 | y3 s C B [yl |vy2|vy3]| Z P R X E
41 1 [0} 1 0 0 1 X X X X X X
42 1 0 1 0 1 0 X X X X X X X X
43 1 0 1 0 1 1 X X X
44 1 0 1 1 0 0 X X X X X X X X
45 1 0 1 1 0 1 X X X X X X
46 1 0 1 1 1 0 X X X X X X X X
47 1 0 1 1 1 1 X X X
a8 1 1 0 0 0 0 X X X X
49 1 1 o 0 0 1 X X
50 1 1 0] 0 1 0 X X X
51 1 1 0 0 1 1 X X X
52 1 1 0 1 0 0 X X
53 1 1 0 1 0 1 X X
54 1 1 0 1 1 0 X X X
55 1 1 0 1 1 1 X X X
56 1 1 1 0 0 0 X X X X X X X X
57 1 1 1 [0} o 1 X X X X X X
58 1 1 1 0 1 o] X X X X X X X X
59 1 1 1 0] 1 1 X X X X X X X X
60 1 1 1 1 0 0 X X X X X X X X
61 1 1 1 1 0 1 X X X X X X
62 1 1 1 1 1 [0 X X X X X X X X
63 1 1 1 1 1 1 X X X X X X X X

‘X'’ represents a bit to be programmed to a logic ‘1",

FIGURE 20 — MCM5004 Program Sheet for Clock Synchronizer and Control

Synchronizer Enable CE1

>
o

(Start Button) B

>

(Clock) C

(Start/Stop Control) S

>
W

>
S

>
(4,1

MCM5004

B0 b———® E (Synchronize)
B1f——— X (Sync Pulses)
82 f————— R (Reset Pulse)
B3 ————— P (In Process)
B4 [—————# Z (Sync & Reset)

BS

B6
B7

=111

50 pF, 3 Places

i
A

4l
1
r

FIGURE 21 — Clock Synchronizer and Control

DIGITAL PULSE SUBTRACTOR — ASYNCHRONOUS
EXAMPLE

An asynchronous circuit, by definition, has no clock to
synchronize the input signals. A digital pulse subtractor
will be designed to show the potential problem areas that
must be considered when designing asynchronous circuits.
One potential problem arises because of the propagation
delay differences between positive and negative going out-
put edges. The faster access time when switching to the

15

low state (in part due to the resistor pullup outputs) need
not cause problems when extra design steps are imple-
mented. In this example, the use of another design tool,
the differential mode state table, will also be shown.

A timing diagram for a pulse subtractor, useful in com-
munication and peripheral areas such as data recovery in
disc and tape systems, is shown in Figure 22. The detection
of a pulse is done on the leading edge while the trailing
edge and the pulse width have no effect. The output pulse

Subtractor
Enable

—

0 e B B W

LI

|| N LI

FIGURE 22 — Timing Diagram for Pulse Subtractor

width (negative going) is equal to the pulse width of high-
est frequency. If Frequency B was higher than Frequency
A, however, the output would stay in the logic “1” state
and no subtraction would take place.

A differential mode state diagram for the pulse sub-
tractor is shown in Figure 23, and is derived from the
timing diagram and word statement of the problem. Refer-
ence 3 describes the diagram in more detail. The diagram
shows that four states, SO thru S3, are needed to define
the problem. The output logic level is under the slashed
line of each circled state. Each line with an arrow indicates
a transition of one input and resulting state change, and it
is labeled with the type of transition. For instance, a
AA refers to the transition of input A from a logic “0” to
a logic “1”. A VA refers to the transition of input A from
a logic ““1” to a logic “0”.

FIGURE 23 — Differential Mode State Diagram for Pulse Subtractor

The primitive flow table is derived as previously shown,
but using Figure 23 as a reference. The states from the
differential mode state diagram are labeled for reference
next to each row of the primitive flow table.

The merged flow table with secondary assignments is
shown in Figure 24 using methods previously discussed.
States M and N were assigned to prevent lock-up conditions.

Inputs Output
AB
State| 00| 01| 11| 10| fap
so| W] 3 — 2 0
s1 1 3 5 @] 1
ss| 8| (®] a 6 0
so | 1 9 (@] s 0
s2 | 8 3 | ()| 7 1
so| 1] 3| 10|@®] o
s2 | 8 3 s | @] 1
s3 3 10| 6 0
so| 11 (@| 1| 2 0
s3 | 8 3 121 o
s1 1 9 | @D | 12| 1
s3 | 8 3 | 10| @] o

FIGURE 24 — Primitive Flow Table

Figure 25 shows the waveforms observed in the lab for
the programmed PROM using the flow table of Figure 25.
A proolem area is illustrated when frequencies A and B
are the same and the leading edge of B occurs slightly
ahead of the leading edge of A. The resulting output fre-

AB
y1 y2 y3 v4 00} 01 11 10 (fa-g
0 1 0 1 a 3 5 | (@ |0
1 O I b| 8 | @ 4 | 6 | o
1 o | o 1 c 1 o || @ |le] o
o 1o o|al sl 3]® @I
0 1 1 1 e 1 3 ORI
1 1 1 1 f 3 (10 6 0
ol ool 1|\ |O]| 2| o
0 1 1) H 8 3 10 | @] o
1 o 1 1 | 1 - - 6 0
0 0 1 1 J <1 —J - 5> 0
1 1 1 0 K 8 3 - - 0
1 1) 0 L 8j \3> - - 0
0 0 0 0 M 1 9 10| 12| o
0 0 1 0 N 1:] 9> 10) 12) 0

FIGURE 25 — Merged Flow Table with Secondary Assignments

\

quency is one half the input frequency, but should be AB
zero frequency. The reason is due tq the _fastgr access time vily2 | va | va oolo1 |11] 10 |tas
of the MCM5004 when the output is switching to the low :
state, tpdp compared to switching to the high state, 0 1 0 e | O 33 4 2~ 0
tpdy- One reason for the difference is the much larger 0 1 o 0 | a2 1 3 s | @ ||
RC time constant when switching to the high state. When 1 0 1 b| 8 ||| 4 6 0
the circuit is in state 8 and input B changes to the high 1 I L 1\ ° | @ Cj) °
state, there is enough time for the circuit to go to state 3 1 1 o 0 d 8 3\ @ @ 1
before input A goes high and the circuit finally goes to 0 ! 1 ' ° ! 3 10) °
state 4. The reason there is enough time to get into state 3 ! ! 1 1 f 3 || 10 6/ o
. . . . 1
is that the secondary variable, Y3, switches from a logic o o 0 1 G ™ @ @ 210,
¢19 M X724 0
“1” to a logic “0” ! ! ! ° H 8 3 @
1 0 1 1 | 1 - - 6
® 0 0 1 1 J <1 - - K6
State ——H-—@ ® ©) ® 6 o | o] o] o]k 1) 9) oy 12
0 o 1 0 L 1 97 | 10| 12
B I: ‘ I l o | 1 N I Y 17| 12
A I I l FIGURE 27 — Revised Merged Flow Table
with Secondary Assignments
V1 \ f AB
vyl | v2 | y3 |vy4 00 01 11 10
o] 1 3 2
vz——\——_r K o|o|o|ol ooo1 |0001 {0010 |0010
4 5 7
‘ G olojo]| 1| o101 0101°
12 13 15
va \ f J o|lol1 || ooo1 - - o111
8 9 1
L o o] 10| 0000”0000’ [0110 '|0110"
16 17 19 18
va a2 [o1 0|0} 0101 |0101 |1100
20 21 23
al o |1 |01 11017 (11017 0100”
£ 28 29 31
A-B \ [e o |1 |1 |1 o101 [0101 [1111 0
24 25 27 26
M o |1 |1 |o0| o010 |oo10 |1110 [1110
FIGURE 26 — Waveforms for Subtractor Design d 1l lolol 11101100 ™ 51 50
52 53 55 54
) o b 11101 1111 |GaoD) |1001 [1111
The problem occurs in the next cycle when the circuit 60 61 62
.. f 1 1 1 1
is in state 1 and input B again changes first, but the cir- 55 rrot - e 059 ottt .
cuit ends up in state 5 causing an output. The circuit should H tyrprpoy o rrar jr100 (G119 (1119
. . 32
have gone to state 3 first and then to state 4 when input A 1 lolo] of - oo Lo
changes to the high state. The reason that the circuit did c tlolol 1] 0101 0001” 39 101128
not get into state 3 is that the secondary variable, Y1, has | dlola el 0011™ 45 70011
to change from a logic “0” to a logic “1”. Due to the 40 41 43 42
1 |of1 o - - - -

longer propagation delay when the output goes to the
high state, input, A changed before the circuit gets into
state 3, it looks to the circuit like both A and B changed
simultaneously causing the change to state 5. This problem
can be solved by going back to the primitive flow table in
Figure 24, and changing the don’t care condition in the
first row to unstable state 4. This results in the revised
merged flow table with secondary assignments in Figure 27.
States K, L, and M were added to prevent lock-up of the
circuit. The excitation and outputs maps are shown in
Figure 28. Note that the output is complemented in the
output map to agree with the timing diagram. The comple-
ment output aids the initialization of the circuit, since the
chip enable is used to make the output go to the high
state when initialized. The program sheet shown in Fig-
ure 29 was derived from Figure 28. The circuit connections
are shown in Figure 30. The circuit as tested in the lab
verified that the previous problem did not occur. The

(a) Excitation Map for Y1, Y2, Y3, and Y4

AB

y1 y2 y3 v4 00| 01 11 10
(o] o 1] (o] 1 1 1 1

0 of o 1 1| ®O|@] o

ol o 1 1 1 I 1

ol o 1 0 1 1 1 1

0 1 0 0 1 1 o | @
0 1 0 1 @ 1 0

0 1 1 1 1 1 INNO)
0 1 1 0 1 1 1 1

1 1 ol o 1 1@ @
1 1 0 1 1@ 1

1 1 1 1 @f 1 1

1 1 1 0 1 O ®
1 0] 0o I Ea

1 o| o 1 1 @f

1 0 1 1 1 - - 1

1 0 1 0 _ I

(b) Output Map for fa.g

FIGURE 28 — Excitation and Output Maps

Data
B4
Y4

BO

B1

B2

B3

B5

Y3

B6
Y2

B7

Y1

Address

A0

A1

A2

v4

A3

y3

A4

y2

Ab

y1

No.

10

11

12
13
14
15
16
17
18
19
20
21

22

23
24
25

26
27

28
29
30

-

(o]

34
35

36
37

38
39
40
41

42
43

44
45

46

47

48
49

50
51

52
53
54
55
56
57

58
59
60
61

62
63

X" represents a bit to be programmed to a logic ““1"".

FIGURE 29 — MCM5004 Program Sheet for Pulse Subtractor

18

subtraction of two frequencies was found to be very
accurate to the nearest readable digit. Two pulse generators
(EH139B) were used for the frequency sources in the
test setup.

Other application ideas are possible such as the digital
pulse adder design in Figure 31. The dotted lines around
the states S1 and S3 in the differential mode state diagram
indicates unstable states. The heavy arrow leading from an

increased, since the introduction of the field programmable
ROM. The number and variety of creative designs is un-
limited. General applications have been illustrated to pro-
vide incentive to investigate these and other applications.
The use of ROMs and PROMs can result in reduced
costs and decreased number of packagesin the final system.
As the ROM sizes get larger and the selling price gets
lower, more application areas will open. Applications

MCM5004
6
Subtractor Enable >-—— CE1 BO
3
fg >—— A0 B1
fa >—H A 82
Sla2 83
8
A3 vy4 B4
9
A4 y3 B5
1
0 A5 v2 B6
vy1B7

19 f—-B
18 |
17]ﬁ
16 * !
1L =
L 4 i€ =
15

50 pF, 4 Places

FIGURE 30 — Pulse Subtractor

unstable state indicates a change to a stable state although
no other input transition occurs. Note, that a leading edge
transition of the B input when in the unstable state S1
cause a movement to state S2. The output pulse width of
the pulse adder is equal to the access time of the PROM.
Note that arrows and rows without stable states are re-
quired in the primitive flow table resulting in another de-
sign tool when designing sequential circuits.

SUMMARY
Practical applications for the ROM have significantly

discussed included replacement of random logic, and asyn-
chronous and synchronous sequential circuit design using
ROMs with feedback. Many standard logic devices using
ROMs may become available in the future for applications
where volume is sufficient and where a ROM can perform
the logic function at a lower cost. The growth potential
for read-only memories looks promising, indeed, with possi-
ble usage in all areas of logic design. It is hoped that this
article will inspire new techniques for using ROMs in re-
placing logic with the emphasis on economics and
ease of use.

(a) DM State Diagram

AB Inputs. Output

Statef 00| 01 [11| 10 |faqsg
so|l ()| 3 6 2J 0
s1 1 3 6 2 1
) VAN I @\ 0
s2(| a || ®|| s 5 0
s2 || @|| 3 6 [5;’ 0
s3 || - - 6 5 1
s2 [{ 1 3 6 5 0
s2 1 7 @ 5 0
so| 1 @) 8| 2)
s1 1 7 87 2 1
S0 1 7 2 0

(b) Primitive Flow Table

FIGURE 31 — DM State Diagram and Primitive Flow Table for Digital Pulse Adder

19

REFERENCES

1. Mitchell P. Marcus, Switching Circuits for Engineerings,
Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

2. William I. Fletcher and Alvin M. Despain, “Simplify
Sequential Circuit Designs with Programmable ROMs,”
Electronic Design 14, July 8, 1971, P. 70.

3. John R. Smith, Jr., and Charles H. Roth, Jr., “Analysis
and Synthesis of Asynchronous Sequential Networks
using Edge-Sensitive Flip-Flops”, IEEE Transaction on
Computers, Vol. C-20,No. 8, August 1971, pp. 847-855.

4. “Programming the MCM5003/5004 Programmable Read-
Only Memory,” Motorola Application Note AN-550.

5. Jerry Prioste, “Sequential Design Techniques Using
ROMs,” IEEE Intercon, Session 28, No. 2, March 1974.

‘ MOTOROLA Semiconductor Products Inc.

Printed in Switzerland

	05722123.tif
	05722124.tif
	05722125.tif
	05722126.tif
	05722127.tif
	05722128.tif
	05722129.tif
	05722130.tif
	05722131.tif
	05722132.tif
	05722133.tif
	05722134.tif
	05722135.tif
	05722136.tif
	05722137.tif
	05722138.tif
	05722139.tif
	05722140.tif
	05722141.tif
	05722142.tif
	05722143.tif
	05722144.tif
	05722145.tif
	05722146.tif
	05722147.tif
	05722148.tif
	05722149.tif
	05722150.tif
	05722151.tif
	05722152.tif
	05722153.tif
	05722154.tif
	05722155.tif
	05722156.tif
	05722157.tif
	05722158.tif
	05722159.tif
	05722160.tif
	05722161.tif
	05722162.tif
	05722163.tif
	05722164.tif
	05722165.tif
	05722167.tif
	05722168.tif
	05722168a.tif
	05722169.tif
	05722170.tif
	05722171.tif
	05722172.tif
	05722173.tif
	05722174.tif
	05722175.tif
	05722176.tif
	05722177.tif
	05722178.tif
	05722179.tif
	05722180.tif
	05722181.tif
	05722182.tif
	05722183.tif
	05722184.tif
	05722185.tif
	05722186.tif
	05722187.tif
	05722188.tif
	05722189.tif
	05722190.tif
	05722191.tif
	05722192.tif
	05722193.tif
	05722194.tif
	05722195.tif
	05722196.tif
	05722197.tif
	05722198.tif
	05722199.tif
	05722201.tif
	05722202.tif
	05722202a.tif
	05722203.tif
	05722204.tif
	05722205.tif
	05722206.tif
	05722207.tif
	05722208.tif
	05722209.tif
	05722210.tif
	05722211.tif
	05722212.tif
	05722213.tif
	05722214.tif
	05722215.tif
	05722216.tif
	05722217.tif
	05722218.tif
	05722219.tif
	05722220.tif
	05722221.tif
	05722223.tif
	05722224.tif
	05722224a.tif
	05722225.tif
	05722226.tif
	05722227.tif
	05722228.tif
	05722229.tif
	05722230.tif
	05722231.tif
	05722232.tif
	05722233.tif
	05722234.tif
	05722235.tif
	05722236.tif
	05722237.tif
	05722238.tif
	05722239.tif
	05722240.tif
	05722241.tif
	05722242.tif
	05722243.tif
	05722244.tif
	05722245.tif
	05722246.tif
	05722247.tif
	05722249.tif
	05722250.tif
	05722250a.tif
	05722251.tif
	05722252.tif
	05722253.tif
	05722254.tif
	05722255.tif
	05722256.tif
	05722257.tif
	05722258.tif
	05722259.tif
	05722260.tif
	05722261.tif
	05722262.tif
	05722263.tif
	05722264.tif
	05722265.tif
	05722267.tif
	05722268.tif
	05722268a.tif
	05722269.tif
	05722270.tif
	05722271.tif
	05722272.tif
	05722273.tif
	05722274.tif
	05722275.tif
	05722276.tif
	05722277.tif
	05722278.tif
	05722279.tif
	05722280.tif
	05722281.tif
	05722282.tif
	05722283.tif
	05722284.tif
	05722285.tif
	05722286.tif
	05722287.tif
	05722288.tif
	05722289.tif
	05722290.tif
	05722291.tif
	05722292.tif
	05722293.tif
	05722294.tif
	05722295.tif
	05722296.tif
	05722297.tif
	05722298.tif
	05722299.tif
	05722300.tif
	05722301.tif
	05722302.tif
	05722303.tif
	05722304.tif
	05722305.tif
	05722306.tif
	05722307.tif
	05722308.tif
	05722309.tif
	05722310.tif
	05722311.tif
	05722312.tif
	05722313.tif
	05722314.tif
	05722315.tif
	05722316.tif
	05722317.tif
	05722318.tif
	05722319.tif
	05722320.tif
	05722321.tif
	05722322.tif
	05722323.tif
	05722324.tif
	05722325.tif
	05722326.tif
	05722327.tif
	05722328.tif
	05722329.tif
	05722330.tif
	05722331.tif
	05722332.tif
	05722333.tif
	05722334.tif
	05722335.tif
	05722336.tif
	05722337.tif
	05722338.tif
	05722339.tif
	05722341.tif
	05722342.tif
	05722342a.tif
	05722343.tif
	05722344.tif
	05722345.tif
	05722346.tif
	05722347.tif
	05722348.tif
	05722349.tif
	05722350.tif
	05722351.tif
	05722352.tif
	05722353.tif
	05722354.tif
	05722355.tif
	05722356.tif
	05722357.tif
	05722358.tif
	05722359.tif
	05722360.tif
	05722361.tif
	05722362.tif
	05722363.tif
	05722364.tif
	05722365.tif
	05722366.tif
	05722367.tif
	05722368.tif
	05722369.tif
	05722370.tif
	05722371.tif
	05722372.tif
	05722373.tif
	05722374.tif
	05722375.tif
	05722376.tif
	05722377.tif
	05722378.tif
	05722379.tif
	05722380.tif
	05722381.tif
	05722382.tif
	05722383.tif
	05722384.tif
	05722385.tif
	05722386.tif
	05722387.tif
	05722388.tif
	05722389.tif
	05722390.tif
	05722391.tif
	05722392.tif
	05722393.tif
	05722395.tif
	05722396.tif
	05722396a.tif
	05722397.tif
	05722398.tif
	05722399.tif
	05722400.tif
	05722401.tif
	05722402.tif
	05722403.tif
	05722404.tif
	05722405.tif
	05722406.tif
	05722407.tif
	05722408.tif
	05722409.tif
	05722410.tif
	05722411.tif
	05722412.tif
	05722413.tif
	05722414.tif
	05722415.tif
	05722416.tif
	05722417.tif
	05722418.tif
	05722419.tif
	05722420.tif
	05722421.tif
	05722422.tif
	05722423.tif
	05722424.tif
	05722425.tif
	05722426.tif
	05722427.tif
	05722429.tif
	05722430.tif
	05722430a.tif
	05722431.tif
	05722432.tif
	05722433.tif
	05722434.tif
	05722435.tif
	05722436.tif
	05722437.tif
	05722438.tif
	05722439.tif
	05722440.tif
	05722441.tif
	05722442.tif
	05722443.tif
	05722444.tif
	05722445.tif
	05722446.tif
	05722447.tif
	05722448.tif
	05722449.tif
	05722450.tif
	05722451.tif
	05722452.tif
	05722453.tif
	05722454.tif
	05722455.tif
	05722456.tif
	05722457.tif
	05722458.tif
	05722459.tif
	05722460.tif
	05722461.tif
	05722462.tif
	05722463.tif
	05722464.tif
	05722465.tif
	05722467.tif
	05722468.tif
	05722468a.tif
	05722469.tif
	05722470.tif
	05722471.tif
	05722472.tif
	05722473.tif
	05722474.tif
	05722475.tif
	05722476.tif
	05722477.tif
	05722478.tif
	05722479.tif
	05722481.tif
	05722482.tif
	05722482a.tif
	05722483.tif
	05722484.tif
	05722485.tif
	05722486.tif
	05722487.tif
	05722488.tif
	05722489.tif
	05722490.tif
	05722491.tif
	05722492.tif
	05722493.tif
	05722494.tif
	05722495.tif
	05722496.tif
	05722497.tif
	05722498.tif
	05722499.tif
	05722500.tif
	05722501.tif
	05722502.tif
	05722503.tif
	05722504.tif
	05722505.tif
	05722506.tif
	05722507.tif
	05722508.tif
	05722509.tif
	05722510.tif
	05722511.tif
	05722512.tif
	05722513.tif
	05722514.tif
	05722515.tif
	05722516.tif
	05722517.tif
	05722518.tif
	05722519.tif
	05722520.tif
	05722521.tif
	05722522.tif
	05722523.tif
	05722524.tif
	05722525.tif
	05722526.tif
	05722527.tif
	05722528.tif
	05722529.tif
	05722530.tif
	05722531.tif
	05722532.tif
	05722533.tif
	05722534.tif
	05722535.tif
	05722536.tif
	05722537.tif
	05722538.tif
	05722539.tif
	05722540.tif
	05722541.tif
	05722542.tif
	05722543.tif
	05722544.tif
	05722545.tif
	05722546.tif
	05722547.tif
	05722548.tif
	05722549.tif
	05722550.tif
	05722551.tif
	05722552.tif
	05722553.tif
	05722554.tif
	05722555.tif
	05722556.tif
	05722557.tif
	05722559.tif
	05722560.tif
	05722560a.tif
	05722561.tif
	05722562.tif
	05722563.tif
	05722564.tif
	05722565.tif
	05722566.tif
	05722567.tif
	05722568.tif
	05722569.tif
	05722570.tif
	05722571.tif
	05722572.tif
	05722573.tif
	05722574.tif
	05722575.tif
	05722577.tif
	05722578.tif
	05722578a.tif
	05722579.tif
	05722580.tif
	05722581.tif
	05722582.tif
	05722583.tif
	05722584.tif
	05722585.tif
	05722586.tif
	05722587.tif
	05722588.tif
	05722589.tif
	05722590.tif
	05722591.tif
	05722592.tif
	05722593.tif
	05722594.tif
	05722595.tif
	05722596.tif
	05722597.tif
	05722598.tif
	05722599.tif
	05722600.tif
	05722601.tif
	05722602.tif
	05722603.tif
	05722604.tif
	05722605.tif
	05722606.tif
	05722607.tif
	05722608.tif
	05722609.tif
	05722610.tif
	05722611.tif
	05722612.tif
	05722613.tif
	05722614.tif
	05722615.tif
	05722616.tif
	05722617.tif
	05722618.tif
	05722619.tif
	05722620.tif
	05722621.tif
	05722622.tif
	05722623.tif
	05722624.tif
	05722625.tif
	05722626.tif
	05722627.tif
	05722628.tif
	05722629.tif
	05722630.tif
	05722631.tif
	05722632.tif
	05722633.tif
	05722634.tif
	05722635.tif
	05722636.tif
	05722637.tif
	05722638.tif
	05722639.tif
	05722640.tif
	05722641.tif
	05722643.tif
	05722644.tif
	05722644a.tif
	05722645.tif
	05722646.tif
	05722647.tif
	05722648.tif
	05722649.tif
	05722650.tif
	05722652.tif
	05722653.tif
	05722654.tif
	05722654a.tif
	05722655.tif
	05722656.tif
	05722657.tif
	05722658.tif
	05722659.tif
	05722660.tif
	05722661.tif
	05722662.tif
	05722663.tif
	05722664.tif
	05722665.tif
	05722666.tif
	05722667.tif
	05722668.tif
	05722669.tif
	05722671.tif
	05722672.tif
	05722672a.tif
	05722673.tif
	05722674.tif
	05722675.tif
	05722676.tif
	05722677.tif
	05722678.tif
	05722679.tif
	05722680.tif
	05722681.tif
	05722682.tif
	05722683.tif
	05722684.tif
	05722685.tif
	05722686.tif
	05722687.tif
	05722688.tif
	05722689.tif
	05722690.tif
	05722691.tif
	05722692.tif
	05722693.tif
	05722694.tif
	05722695.tif
	05722696.tif
	05722697.tif
	05722698.tif
	05722699.tif
	05722700.tif
	05722701.tif
	05722702.tif
	05722703.tif
	05722705.tif
	05722706.tif
	05722706a.tif
	05722707.tif
	05722708.tif
	05722709.tif
	05722710.tif
	05722711.tif
	05722712.tif
	05722713.tif
	05722714.tif
	05722715.tif
	05722716.tif
	05722717.tif
	05722718.tif
	05722719.tif
	05722720.tif
	05722721.tif
	05722722.tif
	05722723.tif
	05722724.tif
	05722725.tif
	05722726.tif
	05722727.tif
	05722728.tif
	05722729.tif
	05722730.tif
	05722731.tif
	05722732.tif
	05722733.tif
	05722734.tif
	05722735.tif
	05722736.tif
	05722737.tif
	05722738.tif
	05722739.tif
	05722740.tif
	05722741.tif
	05722742.tif
	05722743.tif
	05722744.tif
	05722745.tif
	05722746.tif
	05722747.tif
	05722748.tif
	05722749.tif
	05722750.tif
	05722751.tif
	05722752.tif
	05722753.tif
	05722754.tif
	05722755.tif
	05722756.tif
	05722757.tif
	05722758.tif
	05722759.tif
	05722760.tif
	05722761.tif
	05722762.tif
	05722763.tif
	05722764.tif
	05722765.tif
	05722766.tif
	05722767.tif
	05722768.tif
	05722769.tif
	05722770.tif
	05722771.tif
	05722772.tif
	05722773.tif
	05722774.tif
	05722775.tif
	05722776.tif
	05722777.tif
	05722778.tif
	05722779.tif
	05722780.tif
	05722781.tif
	05722782.tif
	05722783.tif
	05722784.tif
	05722785.tif
	05722786.tif
	05722787.tif
	05722788.tif
	05722789.tif
	05722790.tif
	05722791.tif
	05722792.tif
	05722793.tif
	05722794.tif
	05722795.tif
	05722796.tif
	05722797.tif
	05722798.tif
	05722799.tif
	05722800.tif
	05722801.tif
	05722802.tif
	05722803.tif
	05722804.tif
	05722805.tif
	05722806.tif
	05722807.tif
	05722808.tif
	05722809.tif
	05722810.tif
	05722811.tif
	05722812.tif
	05722813.tif
	05722814.tif
	05722815.tif
	05722816.tif
	05722817.tif
	05722818.tif
	05722819.tif
	05722820.tif
	05722821.tif
	05722822.tif
	05722823.tif
	05722824.tif
	05722825.tif
	05722826.tif
	05722827.tif
	05722828.tif
	05722829.tif
	05722831.tif
	05722832.tif
	05722832a.tif
	05722833.tif
	05722834.tif
	05722835.tif
	05722836.tif
	05722837.tif
	05722838.tif
	05722839.tif
	05722840.tif
	05722841.tif
	05722842.tif
	05722843.tif
	05722845.tif
	05722846.tif
	05722846a.tif
	05722847.tif
	05722848.tif
	05722849.tif
	05722850.tif
	05722851.tif
	05722852.tif
	05722853.tif
	05722854.tif
	05722855.tif
	05722856.tif
	05722857.tif
	05722858.tif
	05722859.tif
	05722860.tif
	05722861.tif
	05722862.tif
	05722863.tif
	05722864.tif

