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REPLACING SEQUENTIAL
LOGIC WITH ROMS

INTRODUCTION

Read-Only Memories (ROMs) have become increasingly
popular in logic system design. The number of storage bits
on a ROM chip have increased greatly each year resulting
in lower costs per bit. In turn, these lower costs have
stimulated new applications for ROMs, such as replacing
random logic devices. Microgramming, fo. example, is being
widely used in the design of computers: it replaces the
control logic with ROMs. This results in reduced package
count and lower costs while adding system versatility. The
larger sized ROMs also have been used in the macropro-
gramming area for storing often-used software programs;
in fact, many of the new microprocessors depend on this
technique. ROMs are also used in more traditional appli-
cations such as look-up tables, code conversion, and char-
acter generation.

This article describes the design methods for using ROMs
to replace sequential logic. Sequential logic is considered
as any design that requires random or combinational logic
containing feedback loops. Design techniques for imple-
menting a sequential logic design in gates and flip-flops
are described in Reference 7. The MC5003, 64 word x
8 bit programmable ROM, will be used to illustrate the
techniques involved in implementing sequential designs
with ROMs. Larger ROMs are available that make the
methods described here even more advantageous.

COMBINATIONAL LOGIC

The technique for the replacement of combinational
logic ROMs will be discussed first before looking at se-
quential logic design with feedback. Conversion of com-
bination logic to a ROM can be accomplished if any of
the following are available:

(1) Logic Equations
(2) Truth Table
(3) Logic Drawing

If logic equations are given, the equations must be con-
verted to a Karnaugh map in order to define each output
for all combinations of inputs. Then, the content of the
Karnaugh maps is placed in a truth table to establish the
pattern that the ROM must contain. If a logic drawing
must be converted to a ROM, the equations for each out-
put can be written. Then the procedure follows as dis-
cussed above until the truth table is established.

To determine the number of gates that must be re-
placed before the ROM becomes economical for replacing

random or combinational logic can be estimated by
this formula:
number of gates > $ROM + associated cost/ROM
replaced per ROM ~ $GATE + associated cost/gate

This formula states that the number of gates replaced
for each ROM used should be greater than or equal to the
cost of the ROM plus associated cost divided by the cost
of one gate with its associated overhead. The associated cost
per gate must include the cost of the PC card, power supply
fans, insertion, inventory, connector, capacitors, check out
time, and number of interconnects affecting the reliability.
The associated cost per gate can vary from system to sys-
tem, but $.50 is a figure that many designers would agree
upon as reasonable cost. Assume that the cost of the gate
plus the associated costs is $.50 and that the associated
cost of the ROM is $2.00. The equation now develops as:

replaced per ROM  ~ $.50

As an example, if the cost of the MCM5004 a 64 x 8
PROM is $15 (3 cents/bit) in large quantities, then the
number of gates replaced for each PROM should be more
than 34. A BCD to binary converter using the MCM5004
replaces approximately 54 gates; this would be a savings
of 20 gates or approximately $10.00. Another advantage
of using a ROM is that the system size is reduced and
reliability should improve as a result of fewer packages.

DESIGN EXAMPLES

Unlike simple combinational circuits, many sequential
logic design systems require feedback loops where the
outputs are a function of the input signals and the present
state of the outputs. There are basically two types of
sequential circuit design, synchronous and asynchronous.

Synchronous sequential design requires data inputs that
are synchronized with a clock. When using ROMs, there
are two ways of designing synchronous sequential circuits
as shown in Figure 1. Clocked storage feedback or direct
feedback can be selected. The microprogramming tech-
nique basically uses the clocked storage technique with
latches in a master slave configuration.

The clocked storage technique shown in Figure 1(a)
requires six additional D-flip-flops, but it results in a more
efficient usage of the ROM bits. As an example, the asyn-
chronous circuit of Figure 1(a) can be used as a divide by
64 (or less) counter with any sequence of states possible
(more than one output can change at a time). The pro-
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fully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information
does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.



grammable ROM is used to store the next state table.

In contrast, the sequential circuit with direct feedback,
as shown in Figure 1(b), can be used as a divide by 16
(or less) counter with three outputs that can be used as
decoders or to generate a programmable word sequence.
Only one feedback output can change at a time so that
race conditions will be avoided in the design.

Synchronous data inputs could be added to the address

inputs of the ROMs to produce other types of sequential
circuits. Also, more than one ROM can be used where
more storage is required. Reference 2 gives an example of
the design of a synchronous sequential circuit using clock
storage feedback for generating an output whenever four
bits, and only four, of a 5 bit serial word are logic ones.
The design is straightforward with the PROM storing the
next state table.
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(b) Synchronous sequential circuit with direct feedback.

FIGURE 1 — Synchronous Sequential Circuit Types



COUNTER DESIGN — SYNCHRONOUS EXAMPLE

A divide by 16 counter design illustrates the technique
for designing a synchronous sequential circuit using direct
feedback. The divide by 16 counter is used as a prograrm-
mable word generator. since only one output can change
for each state, a minimum change, reflected code must
be used.

The first step is to draw a timing diagram of the word
statement, see Figure 2. Note that 32 states exist when
both the low and the high states of the clock are included
even though this is a divide by 16 counter. The program-
mable word sequence. BO. B1, and B2, were chosen arbi-
trarily. The BO output generates a number of pulses of 1,
2. 3. 3, and. 2 during each 16 bit word. The Bl output
generates a pulse synchronized with the last pulse occurring
on the BO otuput. Output B2 generates a pulse width that
is 1.2, 3. and 4 clock periods long in sequence for each
16 bit word.

circuit is in stable state 1 and the clock changes from an
“0” to a “1” the circuit goes to unstable state 2 and
finally locks up in stable state 2.

Next, the transition map is prepared as shown in Fig-
ure 4. A merger diagram is not required in this example,
since merging does not occur. A five variable Karnaugh
map is used to represent each of the 32 states in the flow
table (Figure 3). The five variable y1, y2,y3, y4,and y5
represent the secondaries of the circuit; these are the
counter flip-flop outputs in this example. State | is placed
in the square of the map where yl1, y2, y3, y4, and y5
are all in the 17 state. This provides the initialization
state when the chip enable is disabled. Since state I must
go to state 2 when the clock switches from a “0” to a
“17, the state 2 is placed in a square of the map where
there is a one variable change. If the 2 was placed in a
square of the map where there was more than one variable
change a race condition could result. Race conditions
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FIGURE 2 — Timing Diagram for Programmable Word Sequences

The next step is to generate the primitive flow table,
see Figure 3, using the timing diagram (Figure 2). The
circles around the numbers represent stable states, and
numbers without circles represent unstable states. If the
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FIGURE 3 — Primitive Flow Table
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FIGURE 4 — Transition Map

should be avoided since an indeterminate state could re-
sult. Similarly, the rest of the states are placed on the
transition map resulting in a minimum change reflec-
tion code.

Next, the secondary assignments from the transition
map are transferred to the flow table (Figure 5). The
timing diagram for the secondary assignments is then
drawn, as shown in Figure 6. This shows the counter out-
puts which are the secondary variables.

Next, the excitation map is prepared, (Figure 7), to
define the output excitation variables Y1, Y2, Y3, Y4,
Y5 interms of the input secondary variables and the clock
input. A six variable Karnough map is required with the
word number located in the upper right hand corner of
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each square. The weights of the input variables were arbi-
trarily chosen, with y2, y1, C, y5, y4, and y3 have the
weights of 1,2,4,8,16,and 32 respectively. Each stable state
in the map has been circled, and has the same code as the
corresponding code of the secondary state. Each unstable
state is represented with the code of the next secondary
state that will eventually make it a stable state. As an
example, word 59 in Figure 7 has a circle around the
code 11111 which represents stable state 1 in Figure 5.
When the clock switches to the “1” state, word 63 is
selected. Word 63 has the code 11110 which is an unstable
state, 2, and represents the next transfer to a stable state,
which is word 55 representing stable state 2. The rest of
the codes are filled in the squares of the excitation map
using Figure S as a reference.

Next, the output map is prepared, as shown in Fig-
ure 8, in order to define the B2, B1, and BO outputs in
terms of the inputs. Each stable state in the map has been
circled, and represents the same state as was circled in the
excitation map. As an example, word 59 in Figure 8 has a
circle around the code 100 which represents stable state 1
in Figure 5. When the clock switches to the ‘““1” state,
word 63 is selected which is unstable state 2. Since stable
state 2, located at word 55, has an output of 111,a 111
code is placed in the square for word number 63. The last
two outputs for this code in word 63 are actually optional
conditions and could be either a “0” or a ““1”’. For mini-
mum time delay, the outputs are chosen to switch im-
mediately during the unstable state condition. The rest of
the codes are similarly placed in the output map using
the flow table of Figure 5 as a reference.
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tation at the PROM outputs. As an example, word O of
Figure 7 and 8 is transferred to word O in Figure 9.
Word O in Figure 7 is 00010 and in Figure 8 it is 100,
while Figure 9 is marked with 00010100. Similarly, the
rest of the words are transferred to the program sheet.

Figure 10 shows the pin numbers and connections for
the MCM 5003 used in the counter design, while Figures 11
and 12 show the actual waveforms at clock frequencies
of 100 kHz and 1 MHz respectively. Note that the wave-
forms are the same as the ones shown in Figure 2. There
are some possible problem areas that should be understood
when using direct feedback. Although only one address
input changes at a time, differences in the internal delays
in the address decoding of the PROM can cause a hazard
condition to exist in which a false word location is momen-
tarily selected. In the MCM5003, the false word location
will be selected for approximately 10 ns or 1 gate delay
during the hazard condition.

Programmable ROMs using ECL logic internally for the
decoding such as the MCM10149, minimize the hazard
condition. The ECL logic has approximately equal delays
through the OR and NOR outputs of a gate, while TTL
logic requires an extra gate (and delay) to perform the
complement function. There are ways around the hazard
condition by sacrificing speed. The decoding glitches are
evident in Figure 12 on the yl output when in the low
state. The decoding glitches are approximately 0.5 volts
and are a possible problem only when the output is in the
low state. The amplitude of the decoding glitches varies
from device to device. If the amplitudeis large enough to
be detected when fed back at the input, the PROM could
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FIGURE 8 — Output Map for Counter Defining the Outputs B2, B1, and BO

Finally, the codes in the excitation and output maps

are transferred to the program sheet truth table (Figure 9)

amragrammahla ROM tha MOCMSNN2 The aveitation
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variable Y1,Y2,Y3,Y4,and Y5 are chosen to represent the
B7, B6, B5, B4, and B3 PROM outputs respectively. The
B2, B1, and BO outputs are represented by the same no-

switch to an improper state. The solution to the problem
for the MCM5003 is the addition of capacitance Cr, for

the nntnnfe that are fed back as shown in Figure 1N If .
are 10 24acx as Snéwn in r 1gulc tu. 1l a

510 ohm load resistor, R, is used, then a 100 pF load
capacitor, Cp,, should be used. If Rp, = 3.3 k, a load
capacitor is not required for the typical device although
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FIGURE 9 — MCM5003 Program Sheet for Counter



25 to 50 pF must be used for some devices.

If the MCM5004 (with a 2 k internal collector resistor)
is used instead of the MCM5003, a SO pF capacitor should
be used. The RC time constant is enough to squelch the
decoding glitches with a slight sacrifice in speed. The de-
coding glitches are smallest in amplitude at higher V¢C

voltages and at higher temperatures. The synchronous
sequential circuit using clocked storage feedback (see Fig-
ure 1(a) does not have the problem of squelching the
decoding glitches, since the storage devices see only the
information that is present when the clock changes from
a“0”toa“l”.
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FIGURE 10 — PROM Connections for Counter Design with Direct Feedback
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FIGURE 11 — Counter and Output Waveforms of Figure 10
for Clock Frequency of 100 kHz
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CLOCK SYNCHRONIZER AND CONTROL DESIGN —
COMBINATION ASYNCHRONOUS AND
SYNCHRONOUS EXAMPLE

A combination asynchronous and synchronous sequen-
tial circuit can be built, using the MCMS5003, in the design
of a clock synchronizer and control. This circuit is very
useful in the control section of a computer for timing
and control. The synchronous inputs are the clock and
the start/stop control, while the asynchronous input is
the start button. The purpose of the circuit is to synchro-
nize the clocking and timing signals for the control section.

Figure 13(a) and (b) shows the timing diagram for the
synchronizer circuit. The synchronizer enable initializes
the circuit and can be implemented directly using the chip
enable of the PROM. The leading edge of the signal from
the start button switch initiates the timing sequence. The
start/stop control in Figure 13(a) is the output of a latch
or clocked flip-flop: it is normally synchronized with the
clock. One synchronized reset pulse occurs whenever the
start button is depressed. If the start/stop control goes
“high” just after the reset pulse is initiated, sync pulses
will occur until the start/stop control goes low. Note that
the trailing edge of the start button signal has no effect
on the timing signals. The ill-prdcess signal occurs only if
sync pulses occur. The synchronize signal engulfs all reset
and syne pulses. Another output is available having the
reset and sync pulses ORed together.

Figure 13(b) shows the timing diagram under a different
set of conditions. Here, the start/stop control signal is
normally “high” and is the output of a decoder or gate
circuit. One reset and any number of sync pulses occur
until the start/stop signal goes “low” after having decoded

a stop condition. The synchronizer enable can be used to
start the sequence over if the start button signal is ““high”.
If the start button signal is “low” when the synchronizer
enable is brought “low”, the sequence of timing signals
immediately halts.

The design of the synchronizer circuit is a little more
complicated than the counter example. Additional design
information will be clarified in the following discussion
to enable the reader to design other sequential circuits
using PROM’s.

From the timing diagram and an understanding of the
design goals of the circuit, a primitive flow table is derived
as shown in Figure 14. Each row in the table can have one,
and only one non-redundant stable state. The states for
the table, with the numbering being chosen arbitrarily,
are derived from the timing diagram. Some of the states
are listed in sequence in the timing diagram of Figure 13(a).
Only one stable state can exist in each column for a given
output. All possible combination of inputs must be present
in the table with the don’t care conditions being repre-
sented by a dash. Note that the outputs on the table are
the complement of the timing diagram. The reason for the
complement . output signals on the timing diagram was
that the initialization state occurs when all outputs are high.

The next step is to generate the merged flow table,
shown in Figure 15, by combining rows that contain like
state numbers for all combinations of inputs. The outputs
of the rows do not have to be the same when merging two
rows; although in this example, the merged rows did have
the same outputs. The reason for merging is to reduce the
number of states required. In this example, the number
of states is reduced from 24 to six.
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SCB Inputs Outputs
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1 s |®] 2 o |12 ]11 |10 o0 | o o | oo
1 @ s 2 9 |12 13 |10 o | o] oo 1
1 6 || 8 |16 |15 |13 | 1a | 1 0 1 o 1
1 1(® | 7 | 2|9 |23|2a|10]0 0|0 ]|o0]o
1 e || 2 9 |23 |24 |10 o ) 0 0 0
1 6 5 16 | 15 | 13 | 14| 1 0 1 0 1
1 4 3 2 |(® |12 |1 |10]o0 0 0 o o
1 a 3 2 9 |12 | n o |o| oo | o
1 a4 |3 | 2 |9 |12|@|1w]jo|ofo]|o|o
1 | a 5 | - |9 @13 -]o o o | o 1
- - 1615 @]l 1 | o] 1 o | 1
- | - 5 g | 16 | 15 | 13 1 0 1 0 1
22 |21 |19 [ 20 |16 | (9|17 [ 18] 0 1 0 0 1
22 | 21 | 19 | 20 15 |17 [ 18] o 1 ) ) 1
1 6 |19 20 |16 [ 15 [@) | 18 | 1 1 0 1 1
1 6 19 | 20 | 16 | 15 | 17 1 1 0 1 1
1 6 20 | — - |17 |18 ] 1 1 0 1 1
1 6 | 19 - | = |17 || 1 0 1 1
22 |[@) |19 |20 |16 |15 | -~ | - | 0 1 0 0 1
@ |21 |19 |20 |16 |15 | -~ | - | o |1 o | o 1
1 6 7 2 9 |@) |24 | 100 |0 o | oo
1 6 7 2 | 9 |23 1w]lo |ofo | oo
FIGURE 14 — Primitive Flow Table for Synchronizer
SCB Inputs Outputs
000 | 001 |'011 | 010 [ 100 | 101 | 111 |110][Z |P |R |X |E
O E-RIONMORRENI®; olojofo]|o
b 1 @ 5 2 9 | (@ |13 |10 |o|o]o|o]n
c 1 @ | @] 2|9 |6 10 |olo|o]olo
d 1 6 | (® 16 | 15 | (19 1lol1]ol1
e . @ @ 19 | 20 @ |17 |18 |o|1|o|o|1
f 1 6 16 | 15 | () NERIERE
FIGURE 15 — Merged Flow Table for Synchronizer
The next step is to prepare a transition map in order to
assign the secondary variables. Each of the rows are arbi-
trarily assigned a letter in Figure 15 to represent a second-
ary state. A three variable map in Figure 10 is required to
define the six states. The assigning of states in the map is Y1Y2
the same as in the previous counter example by assigning vz ] oo | o1 1 10
states with a one variable change. However, in this example
cycles are required in order that more than one secondary ? Z Z ; 2

variable doesn’t change at one time. Two spare secondary
states, G and H, are utilized to avoid critical races. The
cycles are shown with arrows, indicating the movement
from one unstable state to another unstable state. The
absence of an arrow at an unstable state indicates a direct
movement to a stable state.

12

FIGURE 16 — Transition Map




A cycle from one unstable state to another unstable
state with the samie number cannot be done for all cases,
even though there is a one variable change. This condition
exists, when in the middle of a cycle, another input changes
causing the circuit to go to the wrong state. As an example,
assume the circuit is in stable state six (see Figure 17) and
B goes to a logic “0”. A cycle must occur since Y1, Y2,
and Y3 are presently 000 and must go to stable state 1
with the secondaries changing to 111, a three variable
change. Assume that a cycle was chosen instead from un-
stable state 1 in row C to unstable state 1 in row D. When
the circuit reached row D, a change in the clock from a
“0” to a “1” would cause the circuit to end up in stable
state 8 instead of state 2. By making the cycle from C to
H, (Figure 1), a change in the clock would cause the
circuit to go to the correct state, 2. After the cycles and
transition of states have been assigned in Figures 15 and

16, the secondary assignments are assigned to merged flow
table (Figure 17).

The excitation and output maps are filled out in Fig-
ures 18 and 19, using the same method that was described
previously in the counter design example. In the output
map, the complement of the outputs in Figure 17 were
used to arrive with the correct waveforms as shown in
Figure 13.

Finally, the program sheet for the programmable ROM,
the MCM5004 is filled out with the codes from the
excitation and output maps. The corresponding code in
the word number of the map is transferred to the same
word number in the program sheet.

The circuit connections are shown in Figure 33. The
50 pF capacitors are used to squelch the decoding glitches
from the outputs that are fed back to the inputs.

Secondary Variables SCB Inputs Outputs
yl y2 y3 | 000 001 011 010|100 101 111 110{Z P R X E
a o D) e ® @@ 12 @ 00000
b 1 0 1 W @ s 2 o (1 13 1010 0 0 01
c 0 0 0 116 @ 2 9 Y@ @) ,10]o0oo0000
d 0 0 1 1 6 @ 16 | 15 (13 1701 0 1
e 0 1 o ld| @ 19 |20 17 {180 1 0 0 1
f 1 1 0 1 6— (19 6] 15| @ 110 1 1
G 0 1 1 1 -:l — | 2’15 - | =
h 1 0 0 1 6 - 2 9- 23 -~ ‘o
FIGURE 17 — Merged Flow Table With Secondary Assignments
Secondary Variables SCB Inputs
y1 y2 | y3 000 001 011 010 100 101 111 110
0 1 3 2 a 5 7 6
c| ol o] o [|100 100 |100 (000 100
8 9 11 10 12 13 15 14
d 0 0 1 011 000 [(0O01 001) (011 011 001 001
24 25 27 26 28 29 31 30
G 0 1 1 111 - - - 010 010 — —
16 17 19 18 20 21 23 22
e 0 1 0 010) {(010) |110 110 J010 (010 (110 110
32 33 35 34 36 37 39 38
h 1 0 0 101 000 — 101 101 000 — 101
40 a1 43 42 a4 45 47 46
b | 1] 0| 1 |111 001 [111 111 001 [111
56 57 59 58 60 61 63 62
a | 1| 1| 1 |@iD (1o (1D (1D |G1D (o1 (1D 111
a8 a9 51 50 52 53 55 54
f 1 1110 (111 [100 110 (010 [010

FIGURE 18 — Excitation Map for Y1,Y2,Y3
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Secondary

Variables SCB Inputs
vl | y2|vy3| ooo 001 011 010 100 101 111 110
ol ol ol11111° 6111_'1)1 G111j3 SEEERE EEEEER 61111)5 611137 11111°
1
ol ol 1[11111’ 11110 @101@1 @101@10 11110 11110 @mojs @101@14
24 25 27 26 28 29 31 30
ol 1] 111111 - - - 11110 11110 - =
16 17 19 1 2 21 23
o 1] 0fdo110 | Go110) | -01-0 -01-08 Gon@o (0110 -01-0 -01-022
32 33 35 34 36 37 39 38
11 0] 011111 10110 - 11111 11111 10110 - 11111
41 43
SIS IRNIEEEED -1-10 SEERR EEREERS 45 St-t0 i1
NN GEED N IERE 057611.1.1)5;9 61.1.1.1.)58 GH’.DGO 111100 Fﬂ.ﬂDﬁa @111952
4 1
1] 1] oloo100™| 00100” 60100)5 (0'010@50 —01-0 ] -01-0" @010@55 @010@54
ZPFRXE
FIGURE 19 — Output Map
Address Data
No. | A5 | A4 | A3 | A2 | A1 | A0 | B7 | B6| B5| B4 | B3| B2 | B1| BO
vyt | v2 | y3| s C B [yt |v2|vy3]| Z P R X E
0 0 0 0 0 0 (o] X X X X X X
1 0 [0} 0 (0] [0} 1 X X X X X
2 0 - 0 0 o 1 (o] X X X X X X
3 0 o 0 o} 1 1 X X X X X
4 0 0 0 1 0 0 X X X X X X
5 0 0 0 1 [0} 1 X X X X X
6 [¢] (0] 0 1 1 (o] X X X X X X
7 ] 0 0 1 1 1 X X X X X
8 0 0 1 0 0 0 X X X X X X X
9 0 0 1 o 0 1 X X X X
10 0 o] 1 0 1 o] X X X
11 ¢] [¢] 1 (0] 1 1 X X X
12 0 0 1 1 o 0 X X X X X X
13 (o] o] 1 1 (0] 1 X X X X X X
14 (o] 0 1 1 1 [0} X X X
15 0 o] 1 1 1 1 X X X
16 0 1 0 0 0 0 X X X X
17 0 1 0 0 0 1 X X X X
18 0 1 (0] o} 1 o X X X
19 0 1 0 (o] 1 1 X X X
20 0 1 0 1 0 0] X X X X
21 o} 1 [0} 1 (o] 1 X X X X
22 0 1 0 1 1 0 X X X
23 4] 1 0 1 1 1 X X X
24 [¢] 1 1 0 0 0 X X X X X X X X
25 0 1 1. 0] 0 1
26 0 1 1 0 1 o]
27 0 1 1 0 1 1
28 o] 1 1 1 (¢] (4] X X X X X
29 [0} 1 1 1 0 1 X X X X X
30 0 1 1 1 1 0
31 0 1 1 1 1 1
32 1 0 0 0 [0} 0 X X X X X X X
33 1 (s} [0} o 0] 1 X X X
34 1 [0} [0} [¢] 1 [o] X X X X X X X
35 1 0 ] 0 1 1
36 1 0 0 1 (0] o X X X X X X X
37 1 o] 0 1 (o] 1 X X X
38 1 0 o] 1 1 o] X X X X X X X
39 1 0 0] 1 1 1
40 1 0 1 0 0 0 X X X X X X X

FIGURE 20 — MCM5004 Program Sheet for Clock Synchronizer and Control
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Address Data
No. | A5 | A4 | A3| A2| A1 | A0 B7 | B6| B5| B4 | B3| B2 | B1| BO
vl | y2 | y3 s C B [yl |vy2|vy3]| Z P R X E
41 1 [0} 1 0 0 1 X X X X X X
42 1 0 1 0 1 0 X X X X X X X X
43 1 0 1 0 1 1 X X X
44 1 0 1 1 0 0 X X X X X X X X
45 1 0 1 1 0 1 X X X X X X
46 1 0 1 1 1 0 X X X X X X X X
47 1 0 1 1 1 1 X X X
a8 1 1 0 0 0 0 X X X X
49 1 1 o 0 0 1 X X
50 1 1 0] 0 1 0 X X X
51 1 1 0 0 1 1 X X X
52 1 1 0 1 0 0 X X
53 1 1 0 1 0 1 X X
54 1 1 0 1 1 0 X X X
55 1 1 0 1 1 1 X X X
56 1 1 1 0 0 0 X X X X X X X X
57 1 1 1 [0} o 1 X X X X X X
58 1 1 1 0 1 o] X X X X X X X X
59 1 1 1 0] 1 1 X X X X X X X X
60 1 1 1 1 0 0 X X X X X X X X
61 1 1 1 1 0 1 X X X X X X
62 1 1 1 1 1 [0 X X X X X X X X
63 1 1 1 1 1 1 X X X X X X X X

‘X'’ represents a bit to be programmed to a logic ‘1",

FIGURE 20 — MCM5004 Program Sheet for Clock Synchronizer and Control

Synchronizer Enable CE1

>
o

(Start Button) B

>

(Clock) C

(Start/Stop Control) S

>
W

>
S

>
(4,1

MCM5004

B0 b———® E (Synchronize)
B1f——— X (Sync Pulses)
82 f————— R (Reset Pulse)
B3 ————— P (In Process)
B4 [—————# Z (Sync & Reset)

BS

B6
B7

=111

50 pF, 3 Places

i
A

4l
1
r

FIGURE 21 — Clock Synchronizer and Control

DIGITAL PULSE SUBTRACTOR — ASYNCHRONOUS
EXAMPLE

An asynchronous circuit, by definition, has no clock to
synchronize the input signals. A digital pulse subtractor
will be designed to show the potential problem areas that
must be considered when designing asynchronous circuits.
One potential problem arises because of the propagation
delay differences between positive and negative going out-
put edges. The faster access time when switching to the

15

low state (in part due to the resistor pullup outputs) need
not cause problems when extra design steps are imple-
mented. In this example, the use of another design tool,
the differential mode state table, will also be shown.

A timing diagram for a pulse subtractor, useful in com-
munication and peripheral areas such as data recovery in
disc and tape systems, is shown in Figure 22. The detection
of a pulse is done on the leading edge while the trailing
edge and the pulse width have no effect. The output pulse



Subtractor
Enable

—

0 e B B W

LI

|| N LI

FIGURE 22 — Timing Diagram for Pulse Subtractor

width (negative going) is equal to the pulse width of high-
est frequency. If Frequency B was higher than Frequency
A, however, the output would stay in the logic “1” state
and no subtraction would take place.

A differential mode state diagram for the pulse sub-
tractor is shown in Figure 23, and is derived from the
timing diagram and word statement of the problem. Refer-
ence 3 describes the diagram in more detail. The diagram
shows that four states, SO thru S3, are needed to define
the problem. The output logic level is under the slashed
line of each circled state. Each line with an arrow indicates
a transition of one input and resulting state change, and it
is labeled with the type of transition. For instance, a
AA refers to the transition of input A from a logic “0” to
a logic “1”. A VA refers to the transition of input A from
a logic ““1” to a logic “0”.

FIGURE 23 — Differential Mode State Diagram for Pulse Subtractor

The primitive flow table is derived as previously shown,
but using Figure 23 as a reference. The states from the
differential mode state diagram are labeled for reference
next to each row of the primitive flow table.

The merged flow table with secondary assignments is
shown in Figure 24 using methods previously discussed.
States M and N were assigned to prevent lock-up conditions.

Inputs Output
AB
State| 00| 01| 11| 10| fap
so| W] 3 — 2 0
s1 1 3 5 @] 1
ss| 8| (®] a 6 0
so | 1 9 (@] s 0
s2 | 8 3 | ()| 7 1
so| 1] 3| 10|@®] o
s2 | 8 3 s | @] 1
s3 3 10| 6 0
so| 11 (@| 1| 2 0
s3 | 8 3 121 o
s1 1 9 | @D | 12| 1
s3 | 8 3 | 10| @] o

FIGURE 24 — Primitive Flow Table

Figure 25 shows the waveforms observed in the lab for
the programmed PROM using the flow table of Figure 25.
A proolem area is illustrated when frequencies A and B
are the same and the leading edge of B occurs slightly
ahead of the leading edge of A. The resulting output fre-

AB
y1 y2 y3 v4 00} 01 11 10 (fa-g
0 1 0 1 a 3 5 | (@ |0
1 O I b| 8 | @ 4 | 6 | o
1 o | o 1 c 1 o || @ |le] o
o 1o o|al sl 3]® @I
0 1 1 1 e 1 3 ORI
1 1 1 1 f 3 (10 6 0
ol ool 1|\ |O]| 2| o
0 1 1 ) H 8 3 10 | @] o
1 o 1 1 | 1 - - 6 0
0 0 1 1 J <1 —J - 5> 0
1 1 1 0 K 8 3 - - 0
1 1 ) 0 L 8j \3> - - 0
0 0 0 0 M 1 9 10| 12| o
0 0 1 0 N 1:] 9> 10) 12) 0

FIGURE 25 — Merged Flow Table with Secondary Assignments
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quency is one half the input frequency, but should be AB
zero frequency. The reason is due tq the _fastgr access time vily2 | va | va oolo1 |11] 10 |tas
of the MCM5004 when the output is switching to the low :
state, tpdp compared to switching to the high state, 0 1 0 e | O 33 4 2~ 0
tpdy- One reason for the difference is the much larger 0 1 o 0 | a2 1 3 s | @ ||
RC time constant when switching to the high state. When 1 0 1 b| 8 ||| 4 6 0
the circuit is in state 8 and input B changes to the high 1 I L 1\ ° | @ Cj) °
state, there is enough time for the circuit to go to state 3 1 1 o 0 d 8 3\ @ @ 1
before input A goes high and the circuit finally goes to 0 ! 1 ' ° ! 3 10) °
state 4. The reason there is enough time to get into state 3 ! ! 1 1 f 3 || 10 6/ o
. . . . 1
is that the secondary variable, Y3, switches from a logic o o 0 1 G ™ @ @ 210,
¢19 M X724 0
“1” to a logic “0” ! ! ! ° H 8 3 @
1 0 1 1 | 1 - - 6
® 0 0 1 1 J <1 - - K6
State ——H-—@ ® ©) ® 6 o | o] o] o]k 1) 9) oy 12
0 o 1 0 L 1 97 | 10| 12
B I: ‘ I l o | 1 N I Y 17| 12
A I I l FIGURE 27 — Revised Merged Flow Table
with Secondary Assignments
V1 \ f AB
vyl | v2 | y3 |vy4 00 01 11 10
o] 1 3 2
vz——\——_r K o|o|o|ol ooo1 |0001 {0010 |0010
4 5 7
‘ G olojo]| 1| o101 0101°
12 13 15
va \ f J o|lol1 || ooo1 - - o111
8 9 1
L o o] 10| 0000”0000’ [0110 '|0110"
16 17 19 18
va a2 [ o1 0|0} 0101 |0101 |1100
20 21 23
al o |1 |01 11017 (11017 0100”
£ 28 29 31
A-B \ [ e o |1 |1 |1 o101 [0101 [1111 0
24 25 27 26
M o |1 |1 |o0| o010 |oo10 |1110 [1110
FIGURE 26 — Waveforms for Subtractor Design d 1l lolol 11101100 ™ 51 50
52 53 55 54
) o b 11101 1111 |GaoD) |1001 [1111
The problem occurs in the next cycle when the circuit 60 61 62
.. . . . . f 1 1 1 1
is in state 1 and input B again changes first, but the cir- 55 rrot - e 059 ottt .
cuit ends up in state 5 causing an output. The circuit should H tyrprpoy o rrar jr100 (G119 (1119
. . 32
have gone to state 3 first and then to state 4 when input A 1 lolo] of - oo Lo
changes to the high state. The reason that the circuit did c tlolol 1] 0101 0001” 39 101128
not get into state 3 is that the secondary variable, Y1, has | dlola el 0011™ 45 70011
to change from a logic “0” to a logic “1”. Due to the 40 41 43 42
1 |of1 o - - - -

longer propagation delay when the output goes to the
high state, input, A changed before the circuit gets into
state 3, it looks to the circuit like both A and B changed
simultaneously causing the change to state 5. This problem
can be solved by going back to the primitive flow table in
Figure 24, and changing the don’t care condition in the
first row to unstable state 4. This results in the revised
merged flow table with secondary assignments in Figure 27.
States K, L, and M were added to prevent lock-up of the
circuit. The excitation and outputs maps are shown in
Figure 28. Note that the output is complemented in the
output map to agree with the timing diagram. The comple-
ment output aids the initialization of the circuit, since the
chip enable is used to make the output go to the high
state when initialized. The program sheet shown in Fig-
ure 29 was derived from Figure 28. The circuit connections
are shown in Figure 30. The circuit as tested in the lab
verified that the previous problem did not occur. The

(a) Excitation Map for Y1, Y2, Y3, and Y4

AB

y1 y2 y3 v4 00| 01 11 10
(o] o 1] (o] 1 1 1 1

0 of o 1 1| ®O|@] o

ol o 1 1 1 I 1

ol o 1 0 1 1 1 1

0 1 0 0 1 1 o | @
0 1 0 1 @ 1 0

0 1 1 1 1 1 INNO)
0 1 1 0 1 1 1 1

1 1 ol o 1 1@ @
1 1 0 1 1@ 1

1 1 1 1 @f 1 1

1 1 1 0 1 O ®
1 0] 0o I Ea

1 o| o 1 1 @f

1 0 1 1 1 - - 1

1 0 1 0 _ I

(b) Output Map for fa.g

FIGURE 28 — Excitation and Output Maps




Data
B4
Y4

BO

B1

B2

B3

B5

Y3

B6
Y2

B7

Y1

Address

A0

A1

A2

v4

A3

y3

A4

y2

Ab

y1

No.

10

11

12
13
14
15
16
17
18
19
20
21

22

23
24
25

26
27

28
29
30

-

(o]

34
35

36
37

38
39
40
41

42
43

44
45

46

47

48
49

50
51

52
53
54
55
56
57

58
59
60
61

62
63

X" represents a bit to be programmed to a logic ““1"".

FIGURE 29 — MCM5004 Program Sheet for Pulse Subtractor
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subtraction of two frequencies was found to be very
accurate to the nearest readable digit. Two pulse generators
(EH139B) were used for the frequency sources in the
test setup.

Other application ideas are possible such as the digital
pulse adder design in Figure 31. The dotted lines around
the states S1 and S3 in the differential mode state diagram
indicates unstable states. The heavy arrow leading from an

increased, since the introduction of the field programmable
ROM. The number and variety of creative designs is un-
limited. General applications have been illustrated to pro-
vide incentive to investigate these and other applications.
The use of ROMs and PROMs can result in reduced
costs and decreased number of packagesin the final system.
As the ROM sizes get larger and the selling price gets
lower, more application areas will open. Applications

MCM5004
6
Subtractor Enable >-—— CE1 BO
3
fg >—— A0 B1
fa >—H A 82
Sla2 83
8
A3 vy4 B4
9
A4 y3 B5
1
0 A5 v2 B6
vy1B7

19 f—-B
18 |
17 ]ﬁ
16 * !
1L =
L 4 i€ =
15

50 pF, 4 Places

FIGURE 30 — Pulse Subtractor

unstable state indicates a change to a stable state although
no other input transition occurs. Note, that a leading edge
transition of the B input when in the unstable state S1
cause a movement to state S2. The output pulse width of
the pulse adder is equal to the access time of the PROM.
Note that arrows and rows without stable states are re-
quired in the primitive flow table resulting in another de-
sign tool when designing sequential circuits.

SUMMARY
Practical applications for the ROM have significantly

discussed included replacement of random logic, and asyn-
chronous and synchronous sequential circuit design using
ROMs with feedback. Many standard logic devices using
ROMs may become available in the future for applications
where volume is sufficient and where a ROM can perform
the logic function at a lower cost. The growth potential
for read-only memories looks promising, indeed, with possi-
ble usage in all areas of logic design. It is hoped that this
article will inspire new techniques for using ROMs in re-
placing logic with the emphasis on economics and
ease of use.

(a) DM State Diagram

AB Inputs. Output

Statef 00| 01 [ 11| 10 |faqsg
so|l ()| 3 6 2J 0
s1 1 3 6 2 1
) VAN I @\ 0
s2(| a || ®|| s 5 0
s2 || @|| 3 6 [5;’ 0
s3 || - - 6 5 1
s2 [{ 1 3 6 5 0
s2 1 7 @ 5 0
so| 1 @) 8| 2 )
s1 1 7 87 2 1
S0 1 7 2 0

(b) Primitive Flow Table

FIGURE 31 — DM State Diagram and Primitive Flow Table for Digital Pulse Adder
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